endava -

Re
QqUeStMatﬁh

qld:.' .
31C 11f1k Seni
L

MBsic 1in sent

public class WebAuthnAuthenticator

1 RequestMatcher

UNLOCKING THE UNKNOWNS

CRYPTOGRAPHY ESSENTIALS FOR
SPRING DEVELOPERS

Cryptography
Why should you care?

JUST HAVE
TO FILL IN
THOSE
CARD
DETAILS
AND [I'LL
FINALLY
HAVE THAT [
PS5 I'VE
ALWAYS
WANTED!

- Your app is a target
- You store and send secrets

- Network isn’t safe

- You might be liable

- Spring makes it easy

Fact

Developers can be legally liable in certain jurisdictions if user data is
compromised due to weak encryption or password storage.

i *Reuters

Markets v Sustainability v Lega

dept says

By Reuters

October 25, 2024 12:01 PM CMT+3 - Updated 22 days ago

AMAZON / TECH / SECURITY

Amazon confirms employee data breach, 4 Te

but says it’s limited to contact info

/ Work contact
addresses, pf
building loca

a leak that ae.
year.

World v US Election Business v Markets v Sustainability v LegalVv Breakingviews v Technologyv M

US reaches $31.5 million settlement with
T-Mobile over data breaches

By David Shepardson

September 30, 2024 11:16 PM CMT+3 - Updated 2 months ago

LT

(=]
=2
—— L

endava e

3 YouTube

youtube.com/@laurspilca

@laurspilca

n
(1)
||'

- W=

i woer Spring Security INACTION second ition

n
NANNING

—

’ "N A % 7 A CGChidul practic si interactiv
TYelecom my “ A) '

JAVA 2l = Lauren '!:I U S P 1 Cé

TROUBLESHOOTING Java

Spring Start Here

Spring Sé(urity IN ACTION

The basics

 Symmetric encryption
 Asymmetric encryption
* Cryptographic hashing

« Specifications

@ DEV WEEK 2020 // PRESENTATION NAME // © COPYRIGHT 2020 ENDAVA

Symmetric encryption Common algorithm: AES

» One key to rule them all \/ Good for performance

» Fast! x Challenging because of key distribution

Clear Encryption |) : Decryption Clear
Text > Algorthim Cipher Toxt Algorthim > Text

Encryption Decryption .
spring {2

Fact

AES has been around since 2001 and replaced DES, which had a backdoor weakness.

Advanced Encryption Standard

Input of arbitrary length 1s broken up into blocks of 16
bytes (128-bits) so that each block can be encrypted

/v

16 bytes plain text 16 bytes plain text 16 bytes plain text

AES AES AES
Key enoryption | K& | Encryption | <Y | Encryption

spring {2

Advanced Encryption Standard

Block cipher mode

* Electronic Code Book (ECB): Encrypts each block of data independently
* Cipher Block Chaining (CBC): Encrypts each block based on the previous block

* Galois Counter Mode (GCM): Combines CTR mode for encryption with Galois Field
multiplication for authentication

spring (&

Fact

ECB was famously used in the “Penguin Image Attack™ where encrypting
a photo of Tux the Linux penguin with ECB revealed... the penguin.

Advanced Encryption Standard
CBC

Randomly generated 128- Initialization vector is mixed with the clear text
bit value mixed into the to ensure that repeating patterns in the plain text
input being encrypted. are removed before encryption
16 bytes plain text 16 bytes plain text 16 bytes plain text
Initalization
vector - ’% >

> AES > AES > AES
Key Encryption Key Encryption Key Encryption

AN v

Must be kept secret 16 bytes cipher text 16 bytes cipher text 16 bytes cipher text

The output of the first block is mixed into the input of \>

the second block to ensure repeating patterns of plain
text don’t turn into repeating patterns in the cipher text

Advanced Encryption Standard

GCM

must be randomly generated
every time you encrypt content

Plain text <

v

Ensures that

cipher text was
Key > Authenticated encryptor not tampered
Initialization vector——P» AES-GCM mode with
Output bytes I
Initialization : Authentication
Vector Cipher text Tag

reusing the initialization

A4

vector destroys security
of operating mode

Key —Pp»

Authenticated decrypter
AES-GCM mode

Invalid authentication code or
incorrect key

v

Error

Valid authentication code
& correct Key

Advanced Encryption Standard

Mode| Confidentiality Integrity IV required| Parallelizable Notes
ECB X X Insecure
CBC) ¢ X Good
GCM Preferred

Spring Security uses GCM under the hood
In certain configurations

Symmetric encryption in practice

» Storing sensitive config data
 Encrypting data at rest

 Securing data in a shared store

Asymmetric encryption Common algorithm: RSA, ECC

« Key pairs V Easy key exchange
* Only private key owner can decrypt x Slow, high CPU cost

In Spring apps used for:
« JWTs &

. TLS @

- Digital signatures B

RSA

3233

RSA

61 x 53 = 3233

Trapdoor function

RSA

 Uses large prime numbers and modular arithmetic to generate keys.
 Based on trapdoor one-way functions: easy to multiply, hard to factor.
« Commonly used for digital signatures, TLS, and JWTs

 Keys are large (2048—4096 bits) and operations are slower than ECC.

How are the prime numbers chosen?

- Large enough
- Not too close to each other
- Tested

ECC

Elliptic Curve: y?2=x>—-x+1

— y = +sqrt(x3 + ax + b)
—— y = -sqgrt(x® + ax + b)

e
N

ECC — How many times was P added to get Q?

Point Addition on Elliptic Curve

2P
. 3P o Q

ECC

 Based on elliptic curve mathematics over finite fields.
* Provides stronger security with smaller keys
 Faster and more efficient ideal for high-performance systems.

« Commonly used in JWTs, TLS, SSH, and blockchain systems.

Asymmetric encryption in practice

* Securing communication channels

* Digital signatures

Securing password handling

 Never store raw passwords, not even encrypted!

 Use one-way hashing algorithms: BCrypt, Argon2, PBKDF2

BCrypt is default in Spring Security

spring (&

BCrypt

1. Generate a random salt
2. Combine it with the input before hashing
3. Use Blowfish key extension mechanism

4. Apply multiple (configurable) rounds -> cost // new BCryptPasswordEncoder(12);

$2A$10$<22-CHARACTER-SALT><31-CHARACTER-HASH>

spring {2

> > > > > > > >
Bl B2 B3 B4 BS B6 B7 B8 B9
4 A A 4 4
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
I g O n | | | |
1 1 1 1 1
1 1 1 1 1
| | '
I . ! | |
.) L
> > > > > > > > >
Iter B1 B2 B3 B4 BS B6 B7 B8

1. Allocate a memory buffer divided into blocks
2. Fill each block with pseudo-random data.

3. Repeat the process multiple times.

4. Combine all memory blocks into a final hash output.

PasswordEncoder encoder = new Argon2PasswordEncoder(

16, // salt length

32, // hash length

1, [/ parallelism (threads)
65536, // memory (in KB)

4 [/ iterations

Fact

Argon2 won the Password Hashing Competition (PHC) in 2015.
It can be tuned for time, memory, and parallelism

SHA

\/ Good at checking data integrity and digital signatures
x Bad for password hashing

- - OPENID
Specifications JOSE OAUTHZ | | PKCE | | connect

e ID TOKEN

clients e IDENTITY,
e JWA ® SCOPES,

ROLES AUTH CO LOGIN
DE FLOW e USER INFO

e JWS, JWE e ACCESS SECURES

JOSE (token encryption / signing) JWT

e TOKEN format

e HEADER.PAY-
LOAD.SIGNA-

OpenlD Connect (identity and login layer) | Ture
JWT (token format)

PKCE (securing public clients’ authentication)

OAuth 2 (authorization framework)

TLS/mTLS/X.509 (securing communications)

‘ ofthrl’
f ,; | ;;» (U"ty

' mi for evelopers

1 {

MANNING

endava e

3 YouTube

youtube.com/@laurspilca

LAURENTIU SPILCA

I MANNING

and optimize JYM applications

@laurspilca

._ SECOND EDITION
Laurentiv Spilca

Laurentiv Spilca

= Laurentiu Spilca

| | YT [| ITYTIT

