
The simplest way
to build resilient
applications

Giselle van Dongen

Drop your
questions in

the Wova
Session Q&A!

public class User {

 public void addSubscriptions(SubscriptionRequest req) {

 var paymentId = UUID.randomUUID().toString();
 var payRef = createRecurringPayment(req.creditCard(), paymentId);

 for (String subscription : req.subscriptions()) {
 createSubscription(req.userId(), subscription, payRef);
 }
 }

}

Let’s start with a simple example…

2

→ How can we make this really reliable?

 public void addSubscriptions(SubscriptionRequest req) {

 var paymentId = UUID.randomUUID().toString();
 var payRef = createRecurringPayment(req.creditCard(), paymentId);

 for (String subscription : req.subscriptions()) {
 createSubscription(req.userId(), subscription, payRef);
 }
 }

3

Reliable retries /
persistent queue

Persist IDs
in K/V store?

Deduplicate retries

Retry and
recovery logic

Plus cleanup later!

Writing resilient systems is hard…

Duplicate
requests

Concurrency

Scalability
Distributed
transactions

Half-executed
orchestrationCorrupted

state

Zombie
processes

Network
partitions

Race conditions

Timeouts

Rf. the IT crowd

Duct-taping it all together

Session K/V stores
for app state

Message queues
for async events

+

Schedulers
for timers

Workflow orchestrators
for execution progress

Manual retry &
recovery logic Don’t solve it!

SQS
AWS
StepFunctions

The end…

I’m sure! This is where
the request got stuck!

The end…

Or is it here…?

Duct-taping it all together

Session K/V stores
for app state

Message queues
for async events

+

Schedulers
for timers

Workflow orchestrators
for execution progress

Manual retry &
recovery logic Don’t solve it!

SQS
AWS
StepFunctions

Duct-taping it all together
Session K/V stores

for app state
Message queues
for async events

+

Schedulers
for timers

Workflow orchestrators
for execution progress

Manual retry &
recovery logic

Don’t solve it!

SQS
AWS
StepFunctions

Observability tooling

https://landscape.cncf.io/

Se
rv

ic
e

Ha
nd

le
r

On failure, lose state, partial progress.
Resilience is up to the developer.

Backend
CodeClients Other services

DB update

API call

DB insert

Restate makes applications innately resilient

f()

Stateful Durable Functions: Resilient
without complex state management and
recovery logic.

Backend
CodeClients Other servicesRestate Server

Manages resiliency, state, and
communication.

A hybrid between a workflow orchestrator and a message broker

Workflows
and sagas

Concurrent
async tasks

State machines,
agents, actors

Kafka event
processing

Durable Execution

13

💡 Built-in retries and recovery of progress

@Service
public class User {

 @Handler
 public void addSubscriptions(Context ctx, SubscriptionRequest req) {

 var paymentId = ctx.run(() -> UUID.randomUUID().toString());
 var payRef = ctx.run(() -> createRecurringPayment(req.creditCard(), paymentId));

 for (String subscription : req.subscriptions()) {
 ctx.run(() -> createSubscription(req.userId(), subscription, payRef));
 }
 }

}

 @Handler
 public void addSubscriptions(Context ctx, SubscriptionRequest req) {

 var paymentId = ctx.run(() -> UUID.randomUUID().toString());
 var payRef = ctx.run(() ->
 createRecurringPayment(req.creditCard(), paymentId)
);

 for (String subscription : req.subscriptions()) {
 ctx.run(() ->
 createSubscription(req.userId(), subscription, payRef)
);
 }
 }

✅ pay-id-586

✅ Netflix

14

HTTP 💬 user-897, [Netflix, Disney]

✅ pay-ref-12

💬 user-897,
[Netflix, Disney]

 @Handler
 public void addSubscriptions(Context ctx, SubscriptionRequest req) {

 var paymentId = ctx.run(() -> UUID.randomUUID().toString());
 var payRef = ctx.run(() ->
 createRecurringPayment(req.creditCard(), paymentId)
);

 for (String subscription : req.subscriptions()) {
 ctx.run(() ->
 createSubscription(req.userId(), subscription, payRef)
);
 }
 }

✅ pay-id-586

✅ Netflix

15

✅ pay-ref-12

💬 user-897,
[Netflix, Disney]

HTTP 💬 user-897, [Netflix, Disney]

 @Handler
 public void addSubscriptions(Context ctx, SubscriptionRequest req) {

 var paymentId = ctx.run(() -> UUID.randomUUID().toString());
 var payRef = ctx.run(() ->
 createRecurringPayment(req.creditCard(), paymentId)
);

 for (String subscription : req.subscriptions()) {
 ctx.run(() ->
 createSubscription(req.userId(), subscription, payRef)
);
 }
 }

16

💬 user-897,
[Netflix, Disney]

✅ Disney

🔁 Netflix

🔁 pay-id-586

🔁 pay-ref-12

HTTP 💬 user-897, [Netflix, Disney]Success

DEMO

Writing resilient systems is hard…

Duplicate
requests

Concurrency

Scalability
Distributed
transactions

Half-executed
orchestrationCorrupted

state

Zombie
processes

Network
partitions

Race conditions

Timeouts

Rf. the IT crowd

Writing resilient systems is a lot easier…

Duplicate
requests

Concurrency

Scalability
Distributed
transactions

Half-executed
orchestrationCorrupted

state

Zombie
processes

Network
partitions

Race conditions

Timeouts

Rf. the IT crowd

20

● Single binary, written in Rust

● No need for database, queues, ...

● Distributed setup with

snapshots to S3

● Cloud-native failover support

● Open Source

A transactional stateful stream processing engine

● Stream-processing
architecture for eiciency
and low latency

● Co-located logs and
processors

Replication + object stores

● Restate clusters replicate
events between nodes for low
latency

● The majority of the data is
stored on object store

Currently Supported Languages

23

What our community builds with Restate

Payment
Processing

Webhook
ingestion

Workflows/
SAGAs

Control Planes

Event-driven
Services

AI Agents

Stateful Event
Processing

Workflow
interpreters

Service
Orchestration

Distributed
Transactions

LedgersAI inference

hps://restate.dev

@restatedev

@restatedev.bsky.social

/restatedev

A computer lets you make more mistakes
faster than any invention in human history,
with the possible exceptions of handguns
and tequila.
- Mitch Ratcliffe - Drop your

questions in
the Wova

Session Q&A!

