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Problem statement
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Root issue: nullness is implicit



Express nullness explicitly with 
JSpecify
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Mental model: nullness of type usages

•Unspecified: we don't know whether it can include null or not 

•Nullable: it can include null 

•Non-null: It will not include null





Why not just using Optional<T>?
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Optional is not usable in a lot of use cases

•Runtime overhead 

•Breaks existing API signatures 

•Not intended for use as parameters or fields 

• Increase the complexity of your code and APIs



Why not another @Nullable 
annotation?





Set the default to non-null 
to reduce the noise
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Be aware of @Target(TYPE_USE) 
annotations syntax
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Unsafe code 
should break the build
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Make your code null-safe
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Nullness of arrays (and varargs)
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Nullness of generics is also 
supported
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Consume Java libraries from 
Kotlin
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Null Safety in Spring applications
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Lazy initialization
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Ongoing effort to provide 
null-safe APIs in Spring Boot 4.0
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Upcoming Null Safety portfolio-wide!

Spring 
Boot

Spring 
Framework

Spring 
Data

Spring 
Security

Spring 
AI



Upcoming recommendation to 
enable JSpecify based null-safety 

in Spring applications



Let's turn "the billion dollar mistake" 
into a zero cost abstraction allowing to 
express the potential absence of value
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Looking for contributors



Thank you
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