
Sébastien Deleuze 
Spring Framework Core Committer 
Tanzu Division, Broadcom 
https://seb.deleuze.fr 

Null Safety in Java 
with JSpecify and NullAway

Copyright © 2005-2025 Broadcom, Inc. or its affiliates.

https://seb.deleuze.fr


Problem statement





4

Root issue: nullness is implicit



Express nullness explicitly with 
JSpecify



6

Mental model: nullness of type usages

•Unspecified: we don't know whether it can include null or not 

•Nullable: it can include null 

•Non-null: It will not include null





Why not just using Optional<T>?



9

Optional is not usable in a lot of use cases

•Runtime overhead 

•Breaks existing API signatures 

•Not intended for use as parameters or fields 

• Increase the complexity of your code and APIs



Why not another @Nullable 
annotation?





Set the default to non-null 
to reduce the noise



13



Be aware of @Target(TYPE_USE) 
annotations syntax



15



Unsafe code 
should break the build



17



Make your code null-safe



19



Nullness of arrays (and varargs)



21



Nullness of generics is also 
supported



23



Consume Java libraries from 
Kotlin



25



Null Safety in Spring applications



27



28



Lazy initialization



30



31



Ongoing effort to provide 
null-safe APIs in Spring Boot 4.0



33

Upcoming Null Safety portfolio-wide!

Spring 
Boot

Spring 
Framework

Spring 
Data

Spring 
Security

Spring 
AI



Upcoming recommendation to 
enable JSpecify based null-safety 

in Spring applications



Let's turn "the billion dollar mistake" 
into a zero cost abstraction allowing to 
express the potential absence of value



36



37

Looking for contributors



Thank you

Copyright © 2005-2025 Broadcom, Inc. or its affiliates.


