
Using Full-Stack Signals
for Real-Time Reactive UIs
Beyond REST

Leif Åstrand
VP of Research

Real-time use cases

The secret to real-time updates is

If you remember only one thing from this talk

Shared UI state

Poll
Learning about you

1. Basic implementation

2. Make it real-time

3. Do it yourself

BUILDING A POLL IN 3 STEPS

Current question

Current options

Toggle states

Vote counts

Demo: Add state management
Without considering real-time updates

Signals: reactive value holders
const initialValue = 5;
const count = signal(initialValue);

const doubled = computed(() => count.value * 2);

effect(() => console.log(doubled.value));
// Logs 10

count.value++;
// Logs 12

signal(initial)

x = signal.value

signal.value = x

computed(() => {})

effect(() => {})

Operations

Create

Read

Write

Derive

Listen

signal(initial)

x = signal.value

signal.value = x

computed(() => {})

effect(() => {})

x = signal()

signal.set(x)

signal(initial)

computed(() => {})

effect(() => {})

ref(initial)

watchEffect(() => {})

x = signal.value

signal.value = x

computed(() => {})

Challenge: latency causes conflicts
Initial value = 0
Concurrent updates signal.value++ signal.value++

thenResult value = 1 value = 1

Concurrent updates signal.increment() signal.increment()
Result value = 1 value = 2then

Solution: atomic operations

Expected value = 1 value = 2then

Demo: Make it real-time
In no time

How do you do?

Option 1: Use Vaadin

Option 2.1: Build your own generic sync engine

Option 2.2: Implement use cases with a shared UI state mindset

Key concepts for a generic sync engine

• Integrate with regular Angular / Vue / React signals

• Signal types with atomic operations for numbers, lists, maps and trees

• Event sourcing: Latest value is the result of applying all operations

• Optimistic updates to show feedback before the server confirms

• Transactions to enable more complex operations

• Cluster infrastructure integration to distribute events between server nodes

Demo: Manually shared UI state
Use-case specific solution

QUESTIONS?

1. Basic implementation

2. Make it real-time

3. Do it yourself

BUILDING A POLL IN 3 STEPS

Shared UI state
The secret to real-time updates is

The end
Code at github.com/Legioth/poll

https://github.com/Legioth/poll

