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Cloud costs: The risking risk no one can ignore

Cloud Budgets Are Skyrocketing

Global spend from $595.7B to $723.4B in 2025

#1 Challenge: Controlling cloud spend

“Controlling cloud costs” outranks security and compliance as the #1 cloud concern

17% over budget

Forecasts often fail, causing financial risk

Source 1:  Flexera: State of the cloud report 2025  Source 2: Gartner cloud spending 2024 report



Cloud resources:     idle, $43 Billion Lost
More CPUs, more cloud.. still more waste

    CPU Utilization in Kubernetes clusters

$43.3B wasted

CPU Utilization even in 1000+ CPU clusters



Cloud resources: 90% idle, $43 Billion Lost
More CPUs, more cloud.. still more waste

10% CPU Utilization in Kubernetes clusters

$43.3B wasted by enterprises

17% CPU Utilization even in 1000+ CPU clusters



Imagine the possibilities!
Big challenge, bigger Opportunity. 

What if we could reclaim even a fraction of that 

$43B?

What if 90% idle became 50% or even 30%?

Let’s look ahead and take control.



Our mission today

    Goal 1: CPU-optimization design strategies 

   

Equip you to think about balanced design to promote 

utilization based on carefully analyzed performance and 

availability requirements

   

  Goal 2: Development best practices

   

Equip you to measure, diagnose and right size CPU 

requests and limits, and spot-node tactics to maximize 

utilization and slash idle spend in Kubernetes clusters. 

Development best practices for Java/Spring-on-K8s.

   



Who are we?

Laurentiu Marinescu Ajith Ganesan

▪ Full stack sw engineer, problem solver

▪ Passionate about software craftsmanship, 
new tech 

▪ Advocate of pair/team programming.

▪ Bouldering/Climbing lover

▪ Systems engineer, Data platform strategy

▪ Passionate about tech, Micro SaaS, AI exploration 

▪ Cricket/Cooking/Movies



Revisit the storyline so far…

▪ Companies spend a lot on cloud budget

▪ #1 priority to control cloud budget

▪ 17% over-budget

▪ But still utilization is only ~10% on average, why?



Simulated example of a cluster
2 nodes with 5 containers with very high utilization 
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Simulated example of a cluster
2 nodes with 5 containers with very high utilization but at what cost? 
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Scenario 1: Upgrades
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Scenario 1:  Upgrades

▪ Containers 1 and 4 require sequential 

upgrades

▪ Zero-downtime upgrade is not possible 

for the Extra-heavy-weight-container



Scenario 2: Scaling

Scenario 2:  Scaling

On-demand scaling of container 3 will fail due 
to resource exhaustion
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Scenario 3: Accommodating app crash

Scenario 3:  Accommodating app crash

When scaled-out containers crash, 
insufficient capacity can prevent/slow 
recovery, making remediation efforts slow or 
infeasible
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Scenario 4: Node failures

Scenario 4:  Node failures

Failure of Node 1 will result in non-
deployment of Container 1, 2 and 3 assuming 
equal priorities without eviction policies
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Scenario 5: Zone failure
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Scenario 5:  Zone failure

Zone failure will result in total availability 
loss if node 1 and 2 are connected to same 
zones



Maximizing utilization efficiency is a balancing act 
Even targeting 50% of utilization will not guarantee upgrade activities during a node down
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Container 

Extra-heavy-weight-Container 

Target Utilization – 50% 

Efficiency: capacity of the system to perform its designated functions in an optimized way with the given resources 

(under stated conditions).



Let’s zoom out & understand our landscape

Why optimization matters to us?



Our Data Platform: Enabling Misson Critical Lithography Applications

Complex process with 

nanometer precision

Process variations 

corrected by applications 

integrated into control 

loops

Data platform to host the 

mission-critical 

applications



Managing a diverse technology stack to power mission-critical 

applications



Our data platform cluster topology

Monitoring nodes

Storage Ctrl nodes

Storage nodes

Compute nodes

Edge nodes

K8s Control nodes

Example distribution 

of node groups 
Example distribution of 
applications to node groups

E.g., Compute Node

A Large container

A mid container

A small container

Example distribution 

of containers in a compute node

How we organize our platform
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Key challenges and observations in our data platform

1. Diverse workloads & SLOs 

Applications with varying service level objectives increase complexity

2. Critical & Non-critical applications co-exist

Critical & Non-critical applications share the same infrastructure 

3. Misson-Critical demands

Downtime of even 10 minutes can lead to substantial losses

4. On-prem Hardware Constraints 

Customer premise Hardware leads to long lead times for scaling (> 6 months)

5. Underutilization of resources 

Many environments remain underutilized



Different types of workloads

▪ Applications are not constantly executed, and containers have different execution patterns.

▪ Applications are assigned to nodes, and not all containers peak at the same time.

▪ Applications exhibit non-deterministic behavior, with some being CPU-intensive, others memory-

intensive, and some I/O-intensive, making resource management complex.



Observation 1: Underutilization



Observation 2: Low performance due to throttling



Observation 3: App saturation



Main bottlenecks on our Java Spring Boot apps

Blocking I/O Operations

Slow database queries

Frequent or long GC pauses

Thread contention (locks)



Java applications are CPU-hungry
Multithreaded

CPU starvation: When a container doesn't get enough 

CPU, leading to slow performance and timeouts.

CPU overcommit: When a container uses more CPU 

than allocated, causing throttling and potential node 

crashes.



CPU structure in Linux Systems
How Linux counts CPUs

𝐂𝐏𝐔 𝒔 = 𝐓𝐡𝐫𝐞𝐚𝐝 𝐬  𝐩𝐞𝐫 𝐜𝐨𝐫𝐞 ∗ 𝐂𝐨𝐫𝐞 𝐬  𝐩𝐞𝐫 𝐬𝐨𝐜𝐤𝐞𝐭 ∗ 𝐒𝐨𝐜𝐤𝐞𝐭 𝐬

Figure A CPU configuration overview 
sample.

Figure B. CPU layout mapping sample Figure C. CPU structure and relation



Think in time: CPU usage as time slices

Your Java App does not get CPU, it gets a time slot



Month Day, Year Page 30

Scheduling CPU Time: Traffic Control for Processes

Schedulers decide which process gets CPU time and when.



Simulated example (1/3)

Dividing CPU time with Completely Fair Scheduler

Task A

Task: 25ms

Queue

100ms Time

CPU

Task B

Task: 25ms

Task C

Task: 100ms



Simulated example (2/3)

Dividing CPU time with Completely Fair Scheduler

Task A

Task: 25ms

100ms Time

CPU

Task B

Task: 25ms

Task C

Task: 100ms

Queue

Scheduling Task C will lapse all the available CPUs, 

In this case, Task A and B do not get CPU time



Simulated example (3/3)

Dividing CPU time with Completely Fair Scheduler

Smallest task scheduled first

Each task gets fair share of the time

100ms Time

CPU

100ms

A B CA B CA B CA B C A B CCCC CCCCCCCCCCCC

5ms



Controlling CPU time with Kubernetes

CPU requests 

A container is guaranteed to be allocated the CPU requested.

▪ K8s uses this value to place the container in a node that fulfills this 

resource claim and be guaranteed.

▪ Host CPU relative weight. 

CPU limits 

A container cannot use more than configured limit.

▪ After this value, CPU throttling.

▪ If no limit set, the application can consume all CPU in a node. Request: 
guaranteed 
amount

300m

800m Limit: CPU starts 
throttling

CPU

CPU throttling
Caps the performance of the container when CPU limit 
exceeded

Pod level



How Kubernetes controls CPU time using Linux cgroups

CPU request   

CPU limit   

cgroup v1 cgroup v2

cpu.weight
cpu.shares

(milliCPU * 1024) / 1000

cpu.max
cpu.cfs_quota_us
cpu.cfs_period_us
(milliCPU * period) / 1000

cpu.shares   CPU is allocated in shares (1 core = 1024 shares), default is 1024 shares.

cpu.cfs_quota_us  amount of CPU time that a process can consume over a specific time period.

cpu.cfs_period_us  time window where CPU quota is enforced, measured in microseconds. (default 100,000us)



How Kubernetes maps Pods into Linux cgroup trees

▪ Dedicated cgroups for burstable QoS pods and best effort pods

▪ Guaranteed QoS pods compete, a burstable parent and besteffort parent

root cgroup

node allocatable cgroup (kubepods)

kubepods burstable kubepods besteffort kubepods-pod[UID]

kubepods-pod[UID]

container.scope

kubepods-pod[UID]

container.scope

container.scope



Scenario 1: One pod requires 400ms of CPU time
4 x 100 ms usage time => 100 ms response time

Pod A

CPU request: 1000m

Task: 400ms

Pod ACPU 1

CPU 2

Time

CPU 3

CPU 4

100ms

Pod A

Pod A

Pod A

CPU 



Scenario 2: Two pods require 400ms of CPU time
Pod A and Pod B => 200 ms response time each

Pod A

CPU request: 1000m

Task: 400ms

Pod B

CPU request: 1000m

Task: 400ms

CPU 1

CPU 2

Time

CPU 3

CPU 4

100ms 100ms

CPU 

Pod B

Pod B

Pod A

Pod A

Pod B

Pod B

Pod A

Pod A



Scenario 3: Two pods with CPU limits
Pods have task execution higher than the limit

CPU limit 500m => 50ms  => hard limit

Pod ACPU 1

CPU 2

Time100ms

Pod B Idle CPU

Idle CPU

CPU 

Pod A

CPU Limit: 500m

Task: 100ms

Pod B

CPU Limit: 500m

Task: 100ms

Pod B

Pod A



HOW to solve it?



1. Understand the app specification and behavior 

Rely on App SLO’s, specific SLO’s

Number of threads used

Number of requests

Response times

Task duration



2. Set a baseline

• Ensure X% load on the nodes where container under 

change runs

• Agree on realistic worst-case use-cases

• At the beginning, ensure single instance of container is 

deployed (it eases the test execution and analysis)

• Warm-up java container



3. Trigger a series of execution for one use-case (1/3)
Prometheus

1. container_cpu_usage_seconds_total: the total CPU time used across all cores of your container. 

It comes from the usage_usec field in cpu.stat.

2. container_cpu_user_seconds_total and container_cpu_system_seconds_total track time spent in user mode 

and kernel mode, pulled from user_usec and system_usec.

3. container_cpu_cfs_periods_total tells you how many 100ms CPU periods have passed. 

This comes from nr_periods.

4. container_cpu_cfs_throttled_periods_total counts how many of those periods had the container throttled. If your 

container got throttled during 30 out of 50 windows, this would be 30. It maps to nr_throttled.

5. container_cpu_cfs_throttled_seconds_total shows how much total time the container was throttled. If it got 

paused for 30ms in each of 10 periods, this would show 300000 microseconds (300ms). That’s coming from 

throttled_usec.



3. Trigger a series of execution for one use-case (2/3)

Profile CPU-Request CPU-Limit

TS, WS 0.2 0.2

XS 0.2 1

US, VS (very high 

limit)
0.2 2



3. Trigger a series of execution for one use-case (3/3)

Profile CPU-Request CPU-Limit

TS, WS 0.2 0.2

XS 0.2 1

US, VS (very high 

limit)
0.2 2

High impact on startup time for java apps!

From 100+s => 15s



4. Allocate the needed CPU

1. Restart the container with adjusted 

values 

2. Verify if impact on KPI's and SLA’s

 

3. If there is impact rerun by using 

binary search 

4. If there is no impact then previous 

execution is the considered value 

to be claimed by CPU, therefore 

the container is considered 

balanced

•Allocated CPU Process Duration Comments

2.0 ~ 6 – 7 seconds The KPI used is Task Duration 

and the starting reference point 

is ~ 6 – 7 seconds.

The neededCPUInPeriods results 

to less than 2.

1.0 ~ 8 – 9 seconds Container is restarted.

Test execution series is triggered.

Impact is noticed in Task 

Duration.

CPU must be increased to 1.5..

1.5 ~ 6 – 7 seconds Container is restarted.

Test execution series is triggered.

Same KPI for Task Duration is 

reached.

CPU must be decreased.

1.25 ~ 6 – 7 seconds Doesn’t change or improve the 

KPI.

Concluding that 1.25 is identified 

as optimal CPU and resources are 

balanced within process time 

boundaries while executing the 

identified use cases.



5. Monitor and adjust (Continuous 

results analysis in monitoring 

dashboards)



What helped us

10 steps



1. Optimize application framework, and application

Virtual threads to rescue (JEP 444) – For I/O heavy services.

https://openjdk.org/jeps/444


2. Use AOT processing (and/or native) and App CDS
Reduces start-up time and footprint – Project Leyden

1. AOT processing

2. App CDS

Further Java >24,

AOT Class loading and 

linking

Can be integrated with minimum application code changes.

~ 40% gain on application Start-up time.

~ 33% gain on components CPU resource 
utilization during Start-up.



3. Spring boot apps with Undertow as servlet container

CPU usage: Undertow < Jetty < Tomcat

Memory:  Jetty < Undertow < Tomcat

Performance: Tomcat < Jetty < Undertow



4. Fine tune JVM parameters and set right GC

-XX:ActiveProcessorCount

Specifies the number of CPUs 

reported by the operating system

Runtime.availableProcessors()

-XX:UseSerialGC

-XX:UseParallelGC

-XX:UseG1GC

-XX:UseZGC

-XX:UseShenandoahGC

Avoid relying on JVM defaults, especially in containerized environment.



5. Async tasks and define thread pools

@Async, @CompletableFuture, @ScheduledTask

Ideal for long running or non-blocking tasks

Prevents main thread blockage => improving application throughput

Thread pools

For CPU usage, the pool size is best set to the number of CPU cores 
available.

For I/O-bound tasks, can be 2x time than the number of CPU cores 
available.



6. Set request for normal usage and high limits (or no limits ☺ ) (1/3)

To set or not set limits?

Don’t Set Limits Too Low

Idle CPU cycles can be a significant source of waste 

in a Kubernetes environment. To minimize them, we 

can employ strategies like:

1. CPU bursting

2. Dynamic resource allocation

3. Idle resource reclamation

 



6. 100% CPU usage does not mean bad usage (2/3)

Check if there is starvation

Control the number of threads per instance

 

    

    

    

    

     

     

     

                                               

                                                                     

                                                                                                    

                                                                                                    



6. Aim for 80% resource utilization (3/3)

Resource utilization = 

used resource / claimed resource 

X 100

 

    

    

    

    

     

     

     

                                                                                      

                                                

.

In the likelihood of all containers peak at the same 

time (consuming resources from their limits), the 

remaining can cope with the pressure.



7. Kubernetes cluster autoscaler

K8s cluster autoscaling: Scaling the 

number of nodes in a cluster based on 

changing workloads and conditions.

Not an option for us.

On prem cluster.



8. Horizontal pod autoscaler (1/2)

Horizontal pod autoscaling (HPA): Scaling the 

number of replicas based on CPU utilization or 

other metrics.

NodePod

Pod Pod Pod

Scale out



8. Horizontal pod autoscaler – KEDA (2/2)

KEDA defines autoscaling as a process of two phases:

1. The activation phase (zero-to-one), done by KEDA itself

2. Scaling phase (one-to-many), done by HPA instead



9. Vertical pod autoscaler

Vertical pod autoscaling (VPA): Scaling the 

resources allocated to a pod based on 

changing workloads and conditions. 

NodePod

Pod

Scale up



10. In-place vertical pod scaling (default enabled, beta) – K8s 1.33
Resizing pods without restart

Patch pod with `resource.requests` and `resource.limits` 
introduced as part of KEP-1287

Kubelet Check:  (Node's allocatable capacity - Sum of all 
existing container allocations) >= (New request)
If yes, proceed, if no `PodResizePending`

CRI Handshake: Adjust cgroups accordingly without 
restart (via containerd or CRI-O)

Status update: 
`PodResizePending` - Node is busy. Try again later

`PodResizeInProgress` - Kubelet resize accepted 
(allocated resources), but changes are still applied.

https://github.com/kubernetes/enhancements/issues/1287


Success story: Optimizing CPU sharing 
Real gains

  50%+ reduction in infrastructure footprint

 

   10 to 20% faster SLO adherence across key workloads

   

   Fewer idle cores and better burst handling

manage-

ment

repository

k8s-control

storage-

master

storage-

data

monitor

k8s-control k8s-control

edge

Compute computecompute compute compute

storage-

master

storage-

master

edge edge
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storage-
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storage-
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storage-
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storage-

data

storage-

data

storage-
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data

storage-

data

storage-

data

storage-

data

storage-

data

ComputeCompute computecompute compute compute

ComputeCompute computecompute compute compute

ComputeCompute computecompute compute compute

edge edge

edgeedge edge edge edge



Results: CPU sharing drives latency gains

▪ 1500+ jobs/hour completed consistently – high throughput in shared environments

▪ Reduced average process latency observed – clear performance gain after CPU sharing

▪ Lower latency variance across processes

Before Optimization After Sharing idle CPU

High Peaks = CPU contention 
Smoothed pattern = Balanced workload

CPU time (Seconds)  across various workloads



CPU sharing reduces throttling – with 50% less hardware

▪ 50% hardware footprint reduction

▪ Significantly lower CPU throttling observed after sharing idle resources

Before Optimization After sharing idle resources

Lower throttling = better performance

Process throttling time (Seconds)  across various workloads



Response times stabilized after sharing idle resources

Before Optimization

Hardware Size:

• 23 Compute Nodes

• 10 Edge Nodes

~200 job requests per hour

During Sharing idle CPU

Hardware Size:

• 11 Compute Nodes

•   4 Edge Nodes

~1500 job requests per hour



Key takeaways

  Understand your application’s behavior and load profile

  

  Don’t rely on default JVM settings – fine-tune parameters

  Limit thread count to avoid contention

Reduce requested CPU to maximize packing, set appropriate limits to avoid throttling

We reduced it by as much as 75% for critical workloads and 99% for non-critical workloads 

   Continuously monitor, adapt and tune

   Aim for efficiency, not a fixed target (Utilization can be 50-100% based on app requirements)

   Scale using app-specific KPIs (not just CPU/memory)

Happy optimizing – may your pods never throttle



#springio25

Q & A
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