
A cloud cost saving journey:

Strategies to balance CPU for

containerized JAVA workloads in K8s

Laurentiu Marinescu

Ajith Ganesan

Cloud costs: The risking risk no one can ignore

Cloud Budgets Are Skyrocketing

Global spend from $595.7B to $723.4B in 2025

#1 Challenge: Controlling cloud spend

“Controlling cloud costs” outranks security and compliance as the #1 cloud concern

17% over budget

Forecasts often fail, causing financial risk

Source 1: Flexera: State of the cloud report 2025 Source 2: Gartner cloud spending 2024 report

Cloud resources: idle, $43 Billion Lost
More CPUs, more cloud.. still more waste

 CPU Utilization in Kubernetes clusters

$43.3B wasted

CPU Utilization even in 1000+ CPU clusters

Cloud resources: 90% idle, $43 Billion Lost
More CPUs, more cloud.. still more waste

10% CPU Utilization in Kubernetes clusters

$43.3B wasted by enterprises

17% CPU Utilization even in 1000+ CPU clusters

Imagine the possibilities!
Big challenge, bigger Opportunity.

What if we could reclaim even a fraction of that

$43B?

What if 90% idle became 50% or even 30%?

Let’s look ahead and take control.

Our mission today

 Goal 1: CPU-optimization design strategies

Equip you to think about balanced design to promote

utilization based on carefully analyzed performance and

availability requirements

 Goal 2: Development best practices

Equip you to measure, diagnose and right size CPU

requests and limits, and spot-node tactics to maximize

utilization and slash idle spend in Kubernetes clusters.

Development best practices for Java/Spring-on-K8s.

Who are we?

Laurentiu Marinescu Ajith Ganesan

▪ Full stack sw engineer, problem solver

▪ Passionate about software craftsmanship,
new tech

▪ Advocate of pair/team programming.

▪ Bouldering/Climbing lover

▪ Systems engineer, Data platform strategy

▪ Passionate about tech, Micro SaaS, AI exploration

▪ Cricket/Cooking/Movies

Revisit the storyline so far…

▪ Companies spend a lot on cloud budget

▪ #1 priority to control cloud budget

▪ 17% over-budget

▪ But still utilization is only ~10% on average, why?

Simulated example of a cluster
2 nodes with 5 containers with very high utilization

7
5

%
9

5
%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Simulated example of a cluster
2 nodes with 5 containers with very high utilization but at what cost?

7
5

%
9

5
%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Scenario 1: Upgrades
7

5
%

9
5

%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Scenario 1: Upgrades

▪ Containers 1 and 4 require sequential

upgrades

▪ Zero-downtime upgrade is not possible

for the Extra-heavy-weight-container

Scenario 2: Scaling

Scenario 2: Scaling

On-demand scaling of container 3 will fail due
to resource exhaustion

7
5

%
9

5
%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Scenario 3: Accommodating app crash

Scenario 3: Accommodating app crash

When scaled-out containers crash,
insufficient capacity can prevent/slow
recovery, making remediation efforts slow or
infeasible

7
5

%
9

5
%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Scenario 4: Node failures

Scenario 4: Node failures

Failure of Node 1 will result in non-
deployment of Container 1, 2 and 3 assuming
equal priorities without eviction policies

7
5

%
9

5
%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Scenario 5: Zone failure
7

5
%

9
5

%

Container 1 Container 2 Container 3

Container 4 Extra-heavy-weight-Container

Scenario 5: Zone failure

Zone failure will result in total availability
loss if node 1 and 2 are connected to same
zones

Maximizing utilization efficiency is a balancing act
Even targeting 50% of utilization will not guarantee upgrade activities during a node down

2
5

%
7

5
%

Container

Extra-heavy-weight-Container

Target Utilization – 50%

Efficiency: capacity of the system to perform its designated functions in an optimized way with the given resources

(under stated conditions).

Let’s zoom out & understand our landscape

Why optimization matters to us?

Our Data Platform: Enabling Misson Critical Lithography Applications

Complex process with

nanometer precision

Process variations

corrected by applications

integrated into control

loops

Data platform to host the

mission-critical

applications

Managing a diverse technology stack to power mission-critical

applications

Our data platform cluster topology

Monitoring nodes

Storage Ctrl nodes

Storage nodes

Compute nodes

Edge nodes

K8s Control nodes

Example distribution

of node groups
Example distribution of
applications to node groups

E.g., Compute Node

A Large container

A mid container

A small container

Example distribution

of containers in a compute node

How we organize our platform

….

C

K8s-

CTRL

E

S

S

C

SC

M

C

K8s-

CTRL

E

S

S

SC

K8s-

CTRL

SC

M

C

S

S

C

C

M

Key challenges and observations in our data platform

1. Diverse workloads & SLOs

Applications with varying service level objectives increase complexity

2. Critical & Non-critical applications co-exist

Critical & Non-critical applications share the same infrastructure

3. Misson-Critical demands

Downtime of even 10 minutes can lead to substantial losses

4. On-prem Hardware Constraints

Customer premise Hardware leads to long lead times for scaling (> 6 months)

5. Underutilization of resources

Many environments remain underutilized

Different types of workloads

▪ Applications are not constantly executed, and containers have different execution patterns.

▪ Applications are assigned to nodes, and not all containers peak at the same time.

▪ Applications exhibit non-deterministic behavior, with some being CPU-intensive, others memory-

intensive, and some I/O-intensive, making resource management complex.

Observation 1: Underutilization

Observation 2: Low performance due to throttling

Observation 3: App saturation

Main bottlenecks on our Java Spring Boot apps

Blocking I/O Operations

Slow database queries

Frequent or long GC pauses

Thread contention (locks)

Java applications are CPU-hungry
Multithreaded

CPU starvation: When a container doesn't get enough

CPU, leading to slow performance and timeouts.

CPU overcommit: When a container uses more CPU

than allocated, causing throttling and potential node

crashes.

CPU structure in Linux Systems
How Linux counts CPUs

𝐂𝐏𝐔 𝒔 = 𝐓𝐡𝐫𝐞𝐚𝐝 𝐬 𝐩𝐞𝐫 𝐜𝐨𝐫𝐞 ∗ 𝐂𝐨𝐫𝐞 𝐬 𝐩𝐞𝐫 𝐬𝐨𝐜𝐤𝐞𝐭 ∗ 𝐒𝐨𝐜𝐤𝐞𝐭 𝐬

Figure A CPU configuration overview
sample.

Figure B. CPU layout mapping sample Figure C. CPU structure and relation

Think in time: CPU usage as time slices

Your Java App does not get CPU, it gets a time slot

Month Day, Year Page 30

Scheduling CPU Time: Traffic Control for Processes

Schedulers decide which process gets CPU time and when.

Simulated example (1/3)

Dividing CPU time with Completely Fair Scheduler

Task A

Task: 25ms

Queue

100ms Time

CPU

Task B

Task: 25ms

Task C

Task: 100ms

Simulated example (2/3)

Dividing CPU time with Completely Fair Scheduler

Task A

Task: 25ms

100ms Time

CPU

Task B

Task: 25ms

Task C

Task: 100ms

Queue

Scheduling Task C will lapse all the available CPUs,

In this case, Task A and B do not get CPU time

Simulated example (3/3)

Dividing CPU time with Completely Fair Scheduler

Smallest task scheduled first

Each task gets fair share of the time

100ms Time

CPU

100ms

A B CA B CA B CA B C A B CCCC CCCCCCCCCCCC

5ms

Controlling CPU time with Kubernetes

CPU requests

A container is guaranteed to be allocated the CPU requested.

▪ K8s uses this value to place the container in a node that fulfills this

resource claim and be guaranteed.

▪ Host CPU relative weight.

CPU limits

A container cannot use more than configured limit.

▪ After this value, CPU throttling.

▪ If no limit set, the application can consume all CPU in a node. Request:
guaranteed
amount

300m

800m Limit: CPU starts
throttling

CPU

CPU throttling
Caps the performance of the container when CPU limit
exceeded

Pod level

How Kubernetes controls CPU time using Linux cgroups

CPU request

CPU limit

cgroup v1 cgroup v2

cpu.weight
cpu.shares

(milliCPU * 1024) / 1000

cpu.max
cpu.cfs_quota_us
cpu.cfs_period_us
(milliCPU * period) / 1000

cpu.shares CPU is allocated in shares (1 core = 1024 shares), default is 1024 shares.

cpu.cfs_quota_us amount of CPU time that a process can consume over a specific time period.

cpu.cfs_period_us time window where CPU quota is enforced, measured in microseconds. (default 100,000us)

How Kubernetes maps Pods into Linux cgroup trees

▪ Dedicated cgroups for burstable QoS pods and best effort pods

▪ Guaranteed QoS pods compete, a burstable parent and besteffort parent

root cgroup

node allocatable cgroup (kubepods)

kubepods burstable kubepods besteffort kubepods-pod[UID]

kubepods-pod[UID]

container.scope

kubepods-pod[UID]

container.scope

container.scope

Scenario 1: One pod requires 400ms of CPU time
4 x 100 ms usage time => 100 ms response time

Pod A

CPU request: 1000m

Task: 400ms

Pod ACPU 1

CPU 2

Time

CPU 3

CPU 4

100ms

Pod A

Pod A

Pod A

CPU

Scenario 2: Two pods require 400ms of CPU time
Pod A and Pod B => 200 ms response time each

Pod A

CPU request: 1000m

Task: 400ms

Pod B

CPU request: 1000m

Task: 400ms

CPU 1

CPU 2

Time

CPU 3

CPU 4

100ms 100ms

CPU

Pod B

Pod B

Pod A

Pod A

Pod B

Pod B

Pod A

Pod A

Scenario 3: Two pods with CPU limits
Pods have task execution higher than the limit

CPU limit 500m => 50ms => hard limit

Pod ACPU 1

CPU 2

Time100ms

Pod B Idle CPU

Idle CPU

CPU

Pod A

CPU Limit: 500m

Task: 100ms

Pod B

CPU Limit: 500m

Task: 100ms

Pod B

Pod A

HOW to solve it?

1. Understand the app specification and behavior

Rely on App SLO’s, specific SLO’s

Number of threads used

Number of requests

Response times

Task duration

2. Set a baseline

• Ensure X% load on the nodes where container under

change runs

• Agree on realistic worst-case use-cases

• At the beginning, ensure single instance of container is

deployed (it eases the test execution and analysis)

• Warm-up java container

3. Trigger a series of execution for one use-case (1/3)
Prometheus

1. container_cpu_usage_seconds_total: the total CPU time used across all cores of your container.

It comes from the usage_usec field in cpu.stat.

2. container_cpu_user_seconds_total and container_cpu_system_seconds_total track time spent in user mode

and kernel mode, pulled from user_usec and system_usec.

3. container_cpu_cfs_periods_total tells you how many 100ms CPU periods have passed.

This comes from nr_periods.

4. container_cpu_cfs_throttled_periods_total counts how many of those periods had the container throttled. If your

container got throttled during 30 out of 50 windows, this would be 30. It maps to nr_throttled.

5. container_cpu_cfs_throttled_seconds_total shows how much total time the container was throttled. If it got

paused for 30ms in each of 10 periods, this would show 300000 microseconds (300ms). That’s coming from

throttled_usec.

3. Trigger a series of execution for one use-case (2/3)

Profile CPU-Request CPU-Limit

TS, WS 0.2 0.2

XS 0.2 1

US, VS (very high

limit)
0.2 2

3. Trigger a series of execution for one use-case (3/3)

Profile CPU-Request CPU-Limit

TS, WS 0.2 0.2

XS 0.2 1

US, VS (very high

limit)
0.2 2

High impact on startup time for java apps!

From 100+s => 15s

4. Allocate the needed CPU

1. Restart the container with adjusted

values

2. Verify if impact on KPI's and SLA’s

3. If there is impact rerun by using

binary search

4. If there is no impact then previous

execution is the considered value

to be claimed by CPU, therefore

the container is considered

balanced

•Allocated CPU Process Duration Comments

2.0 ~ 6 – 7 seconds The KPI used is Task Duration

and the starting reference point

is ~ 6 – 7 seconds.

The neededCPUInPeriods results

to less than 2.

1.0 ~ 8 – 9 seconds Container is restarted.

Test execution series is triggered.

Impact is noticed in Task

Duration.

CPU must be increased to 1.5..

1.5 ~ 6 – 7 seconds Container is restarted.

Test execution series is triggered.

Same KPI for Task Duration is

reached.

CPU must be decreased.

1.25 ~ 6 – 7 seconds Doesn’t change or improve the

KPI.

Concluding that 1.25 is identified

as optimal CPU and resources are

balanced within process time

boundaries while executing the

identified use cases.

5. Monitor and adjust (Continuous

results analysis in monitoring

dashboards)

What helped us

10 steps

1. Optimize application framework, and application

Virtual threads to rescue (JEP 444) – For I/O heavy services.

https://openjdk.org/jeps/444

2. Use AOT processing (and/or native) and App CDS
Reduces start-up time and footprint – Project Leyden

1. AOT processing

2. App CDS

Further Java >24,

AOT Class loading and

linking

Can be integrated with minimum application code changes.

~ 40% gain on application Start-up time.

~ 33% gain on components CPU resource
utilization during Start-up.

3. Spring boot apps with Undertow as servlet container

CPU usage: Undertow < Jetty < Tomcat

Memory: Jetty < Undertow < Tomcat

Performance: Tomcat < Jetty < Undertow

4. Fine tune JVM parameters and set right GC

-XX:ActiveProcessorCount

Specifies the number of CPUs

reported by the operating system

Runtime.availableProcessors()

-XX:UseSerialGC

-XX:UseParallelGC

-XX:UseG1GC

-XX:UseZGC

-XX:UseShenandoahGC

Avoid relying on JVM defaults, especially in containerized environment.

5. Async tasks and define thread pools

@Async, @CompletableFuture, @ScheduledTask

Ideal for long running or non-blocking tasks

Prevents main thread blockage => improving application throughput

Thread pools

For CPU usage, the pool size is best set to the number of CPU cores
available.

For I/O-bound tasks, can be 2x time than the number of CPU cores
available.

6. Set request for normal usage and high limits (or no limits ☺) (1/3)

To set or not set limits?

Don’t Set Limits Too Low

Idle CPU cycles can be a significant source of waste

in a Kubernetes environment. To minimize them, we

can employ strategies like:

1. CPU bursting

2. Dynamic resource allocation

3. Idle resource reclamation

6. 100% CPU usage does not mean bad usage (2/3)

Check if there is starvation

Control the number of threads per instance

6. Aim for 80% resource utilization (3/3)

Resource utilization =

used resource / claimed resource

X 100

.

In the likelihood of all containers peak at the same

time (consuming resources from their limits), the

remaining can cope with the pressure.

7. Kubernetes cluster autoscaler

K8s cluster autoscaling: Scaling the

number of nodes in a cluster based on

changing workloads and conditions.

Not an option for us.

On prem cluster.

8. Horizontal pod autoscaler (1/2)

Horizontal pod autoscaling (HPA): Scaling the

number of replicas based on CPU utilization or

other metrics.

NodePod

Pod Pod Pod

Scale out

8. Horizontal pod autoscaler – KEDA (2/2)

KEDA defines autoscaling as a process of two phases:

1. The activation phase (zero-to-one), done by KEDA itself

2. Scaling phase (one-to-many), done by HPA instead

9. Vertical pod autoscaler

Vertical pod autoscaling (VPA): Scaling the

resources allocated to a pod based on

changing workloads and conditions.

NodePod

Pod

Scale up

10. In-place vertical pod scaling (default enabled, beta) – K8s 1.33
Resizing pods without restart

Patch pod with `resource.requests` and `resource.limits`
introduced as part of KEP-1287

Kubelet Check: (Node's allocatable capacity - Sum of all
existing container allocations) >= (New request)
If yes, proceed, if no `PodResizePending`

CRI Handshake: Adjust cgroups accordingly without
restart (via containerd or CRI-O)

Status update:
`PodResizePending` - Node is busy. Try again later

`PodResizeInProgress` - Kubelet resize accepted
(allocated resources), but changes are still applied.

https://github.com/kubernetes/enhancements/issues/1287

Success story: Optimizing CPU sharing
Real gains

 50%+ reduction in infrastructure footprint

 10 to 20% faster SLO adherence across key workloads

 Fewer idle cores and better burst handling

manage-

ment

repository

k8s-control

storage-

master

storage-

data

monitor

k8s-control k8s-control

edge

Compute computecompute compute compute

storage-

master

storage-

master

edge edge

k8s-controlk8s-control

storage-

master

storage-

master

storage-

data

storage-

data

storage-

data

monitormonitormonitor monitormonitor

storage-

data

storage-

data

storage-

data

storage-

data

storage-

data

storage-

data

storage-

data

storage-

data

ComputeCompute computecompute compute compute

ComputeCompute computecompute compute compute

ComputeCompute computecompute compute compute

edge edge

edgeedge edge edge edge

Results: CPU sharing drives latency gains

▪ 1500+ jobs/hour completed consistently – high throughput in shared environments

▪ Reduced average process latency observed – clear performance gain after CPU sharing

▪ Lower latency variance across processes

Before Optimization After Sharing idle CPU

High Peaks = CPU contention
Smoothed pattern = Balanced workload

CPU time (Seconds) across various workloads

CPU sharing reduces throttling – with 50% less hardware

▪ 50% hardware footprint reduction

▪ Significantly lower CPU throttling observed after sharing idle resources

Before Optimization After sharing idle resources

Lower throttling = better performance

Process throttling time (Seconds) across various workloads

Response times stabilized after sharing idle resources

Before Optimization

Hardware Size:

• 23 Compute Nodes

• 10 Edge Nodes

~200 job requests per hour

During Sharing idle CPU

Hardware Size:

• 11 Compute Nodes

• 4 Edge Nodes

~1500 job requests per hour

Key takeaways

 Understand your application’s behavior and load profile

 Don’t rely on default JVM settings – fine-tune parameters

 Limit thread count to avoid contention

Reduce requested CPU to maximize packing, set appropriate limits to avoid throttling

We reduced it by as much as 75% for critical workloads and 99% for non-critical workloads

 Continuously monitor, adapt and tune

 Aim for efficiency, not a fixed target (Utilization can be 50-100% based on app requirements)

 Scale using app-specific KPIs (not just CPU/memory)

Happy optimizing – may your pods never throttle

#springio25

Q & A

	Slide 1
	Slide 2: Cloud costs: The risking risk no one can ignore
	Slide 3: Cloud resources: idle, $43 Billion Lost
	Slide 4: Cloud resources: 90% idle, $43 Billion Lost
	Slide 5: Imagine the possibilities!
	Slide 6: Our mission today
	Slide 7: Who are we?
	Slide 8: Revisit the storyline so far…
	Slide 9: Simulated example of a cluster
	Slide 10: Simulated example of a cluster
	Slide 11: Scenario 1: Upgrades
	Slide 12: Scenario 2: Scaling
	Slide 13: Scenario 3: Accommodating app crash
	Slide 14: Scenario 4: Node failures
	Slide 15: Scenario 5: Zone failure
	Slide 16: Maximizing utilization efficiency is a balancing act
	Slide 17: Let’s zoom out & understand our landscape
	Slide 18: Our Data Platform: Enabling Misson Critical Lithography Applications
	Slide 19: Managing a diverse technology stack to power mission-critical applications
	Slide 20: Our data platform cluster topology
	Slide 21: Key challenges and observations in our data platform
	Slide 22: Different types of workloads
	Slide 23: Observation 1: Underutilization
	Slide 24: Observation 2: Low performance due to throttling
	Slide 25: Observation 3: App saturation
	Slide 26: Main bottlenecks on our Java Spring Boot apps
	Slide 27: Java applications are CPU-hungry
	Slide 28: CPU structure in Linux Systems
	Slide 29: Think in time: CPU usage as time slices
	Slide 30
	Slide 31: Dividing CPU time with Completely Fair Scheduler
	Slide 32: Dividing CPU time with Completely Fair Scheduler
	Slide 33: Dividing CPU time with Completely Fair Scheduler
	Slide 34: Controlling CPU time with Kubernetes
	Slide 35: How Kubernetes controls CPU time using Linux cgroups
	Slide 36: How Kubernetes maps Pods into Linux cgroup trees
	Slide 37: Scenario 1: One pod requires 400ms of CPU time
	Slide 38: Scenario 2: Two pods require 400ms of CPU time
	Slide 39: Scenario 3: Two pods with CPU limits
	Slide 40
	Slide 41: 1. Understand the app specification and behavior
	Slide 42: 2. Set a baseline
	Slide 43: 3. Trigger a series of execution for one use-case (1/3)
	Slide 44: 3. Trigger a series of execution for one use-case (2/3)
	Slide 45: 3. Trigger a series of execution for one use-case (3/3)
	Slide 46: 4. Allocate the needed CPU
	Slide 47: 5. Monitor and adjust (Continuous results analysis in monitoring dashboards)
	Slide 48
	Slide 49: 1. Optimize application framework, and application
	Slide 50: 2. Use AOT processing (and/or native) and App CDS
	Slide 51: 3. Spring boot apps with Undertow as servlet container
	Slide 52: 4. Fine tune JVM parameters and set right GC
	Slide 53: 5. Async tasks and define thread pools
	Slide 54: 6. Set request for normal usage and high limits (or no limits ) (1/3)
	Slide 55: 6. 100% CPU usage does not mean bad usage (2/3)
	Slide 56: 6. Aim for 80% resource utilization (3/3)
	Slide 57: 7. Kubernetes cluster autoscaler
	Slide 58: 8. Horizontal pod autoscaler (1/2)
	Slide 59: 8. Horizontal pod autoscaler – KEDA (2/2)
	Slide 60: 9. Vertical pod autoscaler
	Slide 61: 10. In-place vertical pod scaling (default enabled, beta) – K8s 1.33
	Slide 62: Success story: Optimizing CPU sharing
	Slide 63: Results: CPU sharing drives latency gains
	Slide 64: CPU sharing reduces throttling – with 50% less hardware
	Slide 65: Response times stabilized after sharing idle resources
	Slide 66: Key takeaways
	Slide 67

